A bead mill is a type of equipment used for ultrafine grinding and dispersing of particles. It operates on the principle of impact and attrition: grinding media (beads) made of glass, ceramic, or steel are agitated inside a vessel or a chamber by a rotating shaft with impellers, causing the particles to break into smaller sizes due to collision and shear forces.
Bead mills are widely used in industries such as paints, inks, pharmaceuticals, cosmetics, and agrochemicals for the preparation of high-quality dispersions, emulsions, and suspensions. The key advantages of bead mills include their ability to achieve very fine particle sizes (often sub-micron), improved product stability, and uniform particle distribution. There are various types of bead mills, including horizontal and vertical configurations, each designed for specific applications and capacity requirements.
Bead mills and attritor mills are both used for grinding and dispersing materials down to fine particle sizes. Bead mills work by agitating a mixture of the material to be ground and a grinding medium (beads) with a rotating agitator. This causes the beads to collide with the particles of the feed, breaking them into finer particles. The process is also known as bead milling and the focus is on the chaotic movement, driven by the motion of the beads. Attritor mills, also known as stirred ball mills, operate by rotating a shaft with arms or discs that stir the media and the feed inside a vertical or horizontal tank. This stirring action causes a continuous circulation of the feed and media, creating intense shearing and impact forces that grind the material.
Bead mills and planetary ball mills are both widely used for particle size reduction and the dispersion of materials in various industries, but they have distinct applications based on their operating principles and the results they achieve.
The Planetary Ball mills, the Mixer Mills MM 500 nano and MM 500 control, as well as the High Energy Ball Mill Emax, offer greater versatility compared to Bead Mills. All these mills are suitable for both dry and wet grinding. Unlike bead mills, RETSCH ball mills can also process larger sample pieces using larger grinding balls. Instead of agitating a liquid/bead mixture, the movement of the grinding jars in these mills ensures excellent circulation of the beads, leading to extremely fine grinding results. Therefore, the RETSCH Planetary Ball mills, the MM 500 nano and MM 500 control, and the Emax can be considered as an alternative to traditional bead mills.
nos solutions pour votre application
*La vidéo montre le modèle précédent avec un principe de fonctionnement identique.
Bead beating is a technique used to lyse or disrupt cells and tissues to extract intracellular contents, including nucleic acids (DNA, RNA), proteins, and other cellular components. This method involves the vigorous agitation of a sample mixed with small, often spherical, beads in a closed container. The beads are made from various materials such as glass, ceramic, steel, or zirconium, depending on the type of sample and the desired outcome.
The process works by physically shearing the cells apart as they collide with the beads and each other due to the high-speed shaking or vortexing of the sample. The effectiveness of bead beating is influenced by several factors, including the size and material of the beads, the speed and duration of agitation, the type and strength of the cell walls or membranes being disrupted, and the volume and consistency of the sample.
Bead beating is a versatile technique used across a range of applications, from molecular biology and biochemistry to environmental science and food testing. It is particularly useful for processing difficult-to-lyse samples, such as yeast, fungi, algae, and tissues from plants and animals, as well as for homogenizing samples with mixed cell types. The method offers several advantages, including the ability to process multiple samples simultaneously, the potential for high-throughput automation, and compatibility with a wide variety of sample types.
Another RETSCH ball mill, the Mixer Mill MM 400, is well known for a process called bead beating, and thus also is a bead mill.
The MM 400 processes up to 20 samples in 1.5 or 2 ml Eppendorf tubes without cross contamination which saves time for the operator. Additionally, an adapter is available to accommodate up to eight 50 ml Falcon tubes. The optimal bead size for cell disruption varies based on the cell type; for bacteria and yeast, glass beads ranging from 0.75 to 1.5 mm are recommended, while smaller beads within the range of 0.1 to 0.5 mm are more suitable for fungi and microalgae.
For DNA or RNA extraction, smaller single-use tubes up to 2 ml are ideal, whereas larger vials like the 50 ml Falcon tubes are well-suited for processing cell suspensions up to 240 ml in total for proteins or metabolites. The optimum bead beating parameters vary according to cell type. It may take some experimenting to find the best results. Usually, 30 s (most microalgae) to 7 min (yeasts in general) of bead beating are required to fully disrupt the cells.
En accueillant jusqu'à cinquante récipients jetables de 2 ml, les vibrobroyeurs comme le MM 500 vario augmentent le débit d'échantillons.
Controlling the temperature can be crucial in wet grinding processes or bead beating processes as many materials processed in bead mills are temperature-sensitive. Excessive heat can cause undesirable chemical reactions or physical changes, such as polymer degradation, color changes in pigments, or changes in the crystalline structure of materials. For cell disruption, proteins are very temperature-sensitive and degrade quickly. Maintaining an optimal temperature ensures the integrity of the material's properties. Another aspect is the viscosity: Temperature fluctuations can affect the viscosity of the slurry being processed, which in turn influences the grinding efficiency and the quality of dispersion. A stable temperature ensures consistent viscosity, which is critical for achieving uniform particle sizes and a stable dispersion.
To manage these issues, bead mills often incorporate temperature control mechanisms, such as cooling jackets or external chillers, which circulate a cooling fluid around the grinding chamber to dissipate excess heat. Some mills also feature temperature monitoring systems to enable precise control over the process conditions.
RETSCH offers two bead mills where the temperature can be controlled easily during wet grinding or bead beating: The High Energy Ball Mill Emax and the Mixer Mill MM 500 control.
The development of a high-energy ball mill presents a significant challenge in temperature management, as the intense energy required for size reduction generates substantial heat within the grinding jar. RETSCH has addressed this issue with a novel water-cooling system integrated into the mill. Consequently, the Emax typically does not necessitate cooling breaks, which are common in long-term processes using traditional ball mills, even at reduced speeds. In the Emax, the cooling system effectively lowers the temperature of the grinding jars through the jar brackets. This method is highly efficient since water dissipates heat more readily than air. Users have the flexibility to select from three cooling modes: besides the built-in cooling, the mill can be connected to a chiller or directly to a water tap to further reduce the temperature. A chiller set to 4°C is the best choice to assure ambient temperatures for wet grinding processes when the Emax is used as a bead mill.
Le MM 500 control est un broyeur à billes de laboratoire à haute énergie qui peut être utilisé pour le broyage sec, humide et cryogénique avec une fréquence allant jusqu'à 30 Hz. C'est le premier vibro-broyeur du marché qui permet de surveiller et de contrôler la température d'un processus de broyage.
La zone de température couvre une gamme de -100°C à 100°C, il s'agit d'une caractéristique proposée par différentes options, ce qui permet d’offrir une polyvalence maximum. Le broyeur peut fonctionner avec différents fluides thermiques, ce qui permet d'utiliser un grand nombre de dispositifs de régulation pour le refroidissement ou le chauffage. Si l'azote liquide est choisi pour le refroidissement, le broyeur doit être associé au dispositif cryoPad, disponible en option. La technologie innovante cryoPad permet de sélectionner et de contrôler une température de refroidissement spécifique dans une plage de – 100°C à 0°C pour le processus de broyage.
For bead beating and wet grinding, the use of the external chiller set to 4 °C is a good choice, so that cell suspensions are efficiently cooled and heat from wet grinding processes is effectively dissipated.
Le refroidissement et la chauffe de l'échantillon sont réalisés grâce au concept breveté des plaques thermiques, rendant obsolète le refroidissement de l'échantillon avec, par exemple, des bains d'azote liquide ouverts ou de la glace sèche. Pour la régulation, les bols de broyage sont simplement placés sur les plaques thermiques. Lorsque les bols de broyage entrent en contact avec les plaques thermiques, la chaleur est effectivement transférée des plaques vers les bols via le système de régulation. La conception brevetée du fluide hermétiquement scellé permet de faire fonctionner le broyeur avec différents fluides thermiques, assurant une régulation de température flexible et sûre et ne nécessitant qu'un effort minimal pour l'utilisateur. En fonction de la configuration, la température des plaques thermiques peut être réglée dans une gamme allant de – 100°C à + 100°C.
Avec les bols de broyage multicavité et un adaptateur pour les tubes à réaction, il est possible de traiter simultanément plusieurs petits échantillons, comme cela peut être nécessaire pour les applications pharmaceutiques, chimiques et biochimiques. Les bols à petites cavités offrent de nouvelles possibilités pour les processus mécanochimiques avec de petites quantités d'échantillons.
Les bols de broyage multicavité ont des cavités ovales qui garantissent un mélange efficace de l'échantillon. Les verseurs facilitent la manipulation en toute sécurité. Les bols de broyage multicavité sont fabriqués en acier inoxydable et assurent ainsi un transfert de chaleur efficace vers ou depuis l'échantillon.
L'adaptateur peut accueillir jusqu'à 18 récipients de réaction jetables de 1,5 ou 2,0 ml (par ex. tubes Eppendorf) ou neuf tubes en acier de 2,0 ml. Avec ses deux stations de broyage, le Vibrobroyeur MM 500 control peut désormais traiter jusqu'à 36 échantillons en un seul passage. Il convient d'utiliser des tubes en acier de 2,0 ml lorsque les échantillons doivent être congelés ou chauffés, car les tubes à réaction en polymère ne résistent pas à la contrainte mécanique des températures extrêmes. L'adaptateur est en aluminium, ce qui permet de transférer efficacement la chaleur vers et depuis les tubes à réaction.
Les appareils RETSCH sont utilisés dans tous les secteurs industriels aussi bien pour la préparation d’échantillons, avec une large gamme de méthodes analytiques, que pour l’analyse granulométrique, dans un contexte de contrôle de production et analyse de la qualité
RETSCH connait une augmentation des exigences dans ces domaines avec une philosophie produit basée sur cette citation d’ Aristote:
Retsch dispose d’un réseau de filiales et de distributeurs formés pour s'assurer que les produits et services sont disponibles partout dans le monde. Les spécialistes des produits Retsch et le service clientèle se feront un plaisir de répondre à toutes les questions que vous pourriez avoir.
Yes, as the different ball mills work with agitation of small beads in liquid to minimize sample´s particle size or for cell disruption, RETSCH Mills can be regarded as bead mills. For Mixer Mills RETSCH offers special adapters designed for bead beating and cell disruption.
Yes, cooling is crucial for bead mills assuring a good viscosity and ambient temperatures, so that temperature-sensitive substances are not evaporated or degraded